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Abstract
We study the simplified Hubbard (SH) model in the presence of a transverse
field in the infinite-dimension limit. The relevant one-particle Green’s functions
of the model are obtained by means of a perturbative treatment of the hopping
and of the transverse field around the atomic limit. We consider an analytical
solution for the impurity problem. It is shown that this solution is very accurate
in describing the spectral properties of the heavy particles of the SH model for
intermediate and strong values of the on-site Coulomb interaction U . We find
that for large values of U an insulator–metal transition takes place as a function
of the transverse field. We analyse the metallic phase through the behaviour of
the density of states and those of the optical conductivity and static resistivity.
Our results for the latter quantity agree with what is observed in experiments
on Bi2Sr2CuOy .

1. Introduction

In the last few years, several experimental works have considered the problem of the magnetic
response in strongly correlated electronic systems. For example, the spin blockade problem
in quantum dots in magnetic fields has been considered by different groups [1, 2]. The far-
infrared transmission in thin films of YBaCu3O7 has been measured by Drew et al [3] and Lihn
et al [4], and a magneto-optical study of the magnetization for this compound was performed
by Uspenskaya et al [5]. The study of the magnetic properties of quantum dots [2] as well
as high-Tc thin films [6–8] in the presence of transverse magnetic fields has also been of
great interest.

An important problem related to high-Tc compounds is that of understanding the normal-
state properties of the in-plane (ρab) and out-of-plane (ρc) dc resistivity for different values
of the doping concentration [9]. It is well known that the easiest way to suppress the super-
conductivity at low temperatures without deliberate chemical substitution is to apply a high
(pulsed) magnetic field. In such experiments the field is usually applied parallel to the c-axis to
most effectively suppress the superconducting state, so the magnetic field is normally applied
perpendicular to the CuO2 basal plane where the ordered spins are primarily aligned [10, 11].
This alignment is usually originated by spin–orbit interaction and it has been observed for
different alloys [12].
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On the other hand, extensive experimental investigations show that the normal-state
properties of high-Tc superconductors are not explained in terms of the Fermi-liquid (FL)
theory [9,13]. Deviations from the normal FL behaviour were observed also in the normal state
of different heavy-fermion compounds [14] as well as in quasi-one-dimensional materials [15].
This unexpected behaviour increased the interest in studying physical models that clearly
present non-Fermi-liquid (NFL) properties. For example, Si et al [16] introduced a spinless
two-band model to describe the effect of interactions in a band insulating system. By solving
the model numerically in the limit of infinite spatial dimensions (d → ∞) they showed that
it exhibits NFL properties. In addition, Consiglio and Gusmão [17] have shown that the main
features of the optical conductivity of the Kondo alloy Y1−xUxPd3 are well taken into account
by the simplified periodic Anderson model. In the last few years, attention has also been paid
to the simplified Hubbard (SH) model [18–22]. This is a modification of the Hubbard model,
where electrons with one particular spin orientation do not hop in the lattice. This is one of
the few models which have an exact solution in the limit of high dimensions [18], and it shows
a metal–insulator transition both as a function of the on-site Coulomb interaction and as a
function of the doping.

Of particular importance here is the work of Brandt and Urbanek [23], where the spectral
properties of the heavy particles, the electrons that do not hop, are discussed in detail. In
addition, some years ago the SH model in a magnetic field was studied by van Dongen and
Leinung [24]. They considered the problem of the metal–insulator transition as a function
of the Zeeman (z-direction) field. As expected, at large fields the system is a fully polarized
ferromagnet; however, in the non-saturated phase a metal–insulator (MI) transition takes place
as a function of the field and the local on-site Coulomb interaction (U). They showed that a
magnetic field slightly reduces the critical value of the Coulomb interaction, with the result
that the MI transition for non-zero field occurs at a criticalU smaller than that for the transition
at zero field.

It is worth noticing that, despite the great interest in strongly correlated electron systems,
to the best of our knowledge there has been no investigation of the effects of transverse fields
in models which explicitly show both broken spin symmetry and non-Fermi-liquid properties.
In this paper, we address precisely this issue: the study of the SH model in the presence of a
transverse field in the high-dimension limit. This limit, introduced originally by Metzner and
Vollhardt [25], has been shown to be a very good starting point in the study of several physical
systems [26]. We study the SH model because it has by construction broken spin symmetry,
which is closely connected to the different dynamics of the two types of electrons. Here,
we discuss the formal solution of this model in a transverse field, where the so-called static
approximation [27] is employed to solve the related single-site problem. Comparing with the
results of reference [23], we show that the static approximation gives a very accurate description
of the T = 0 physical properties of the heavy particles for on-site Coulomb interactions above
the metal–insulator transition. Next, we study the effect of the transverse field on the spectral
and the optical properties of the SH model.

2. Model and perturbation method

In the usual notation, the SH model in a transverse field is described by the Hamiltonian

H =
∑

k

εkc
†
k↑ck↑ + U

∑
i

ni↑ni↓ + (E − µ)
∑
iσ

niσ +
∑
i

t (c
†
i↑ci↓ + h.c.) (1)

where εk is the dispersion relation of the conduction electrons (↑-electrons), and the ↓-electrons
do not hop in this model. E is the energy level of the two particles, which are coupled through
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the correlation U and a transverse field t . This field is usually a magnetic field along the
x-direction, but a similar type of effect could have a different origin. One example would be a
correlated hopping with spin flip originated in the spin–orbit interaction, and this type of term
has already been employed [28] in the study of other strongly correlated electron systems.

In this work we are interested in the two relevant one-particle Green’s functions of
equation (1). The temperature-dependent one-particle Green’s function for both up and down
electrons is obtained, following the approach recently introduced to study the formal solution
of a spinless two-band model [29], by means of a perturbative treatment around the atomic
limit of the hopping and the transverse-field terms. To apply this method, we first consider
the exact solution of the unperturbed Hamiltonian, given by the second and third terms of
the RHS of equation (1). Next we solve the t = 0 limit of equation (1) by means of a tight-
binding treatment around the atomic limit of the conduction electrons [30]. The formal solution
of the complete Hamiltonian is then obtained by performing a perturbative treatment on the
hybridization term [29]. Following this procedure and considering the high-dimension limit,
it is straightforward to show that

Gii↑(iωn) = 1

N

∑
k

1

[G↑(iωn)]−1 − εk − t2G↓(iωn)
(2)

and

Gii↓(iωn) = G↓(iωn)[1 + G↓(iωn)t
2Gii↑(iωn)] (3)

where G↑(iωn) and G↓(iωn) are the irreducible one-particle Green’s functions for the cond-
uction electrons and for the heavy particles, respectively. The former is irreducible in the sense
that the contributing diagrams cannot be divided into two pieces by cutting a single hopping
line, while the second is irreducible with respect to the cutting of a t2ḡk↑(iωn) line [17, 29],
where ḡk↑(iωn) is the solution of equation (1) in the limit of t = 0. From equation (2) it
becomes clear that the transverse field t acts as a hybridization term, mixing the single-site
one-particle excitation of the ↑-electrons with the ↓-electrons. One should notice that in the
case of the complete Hubbard model a similar equation for the ↓-electrons is obtained by
exchanging the spin directions. The main difference between equations (2), (3) and those
of reference [29] is that here they describe the formal solution of the one-band model with
hybridization in the spin sector, while there we considered a two-band model with interaction
and hybridization in the charge degrees of freedom of fully polarized orbitals1.

The irreducible propagators in equations (2), (3) can be written in terms of the single-site
one-particle Green’s function and the dynamical mean field Aσ (iωn), which connects a single
site with the electron bath, through the relation [27]

1

Gσ (iωn)
= 1

Giiσ (iωn)
+ Aσ (iωn). (4)

It is important to notice that once we turn on the transverse field, the solution of the
conduction electron local problem is not trivial any longer. This is because the transverse-
field term locally hybridizes the up and down electrons, so the spin-down electrons are not
frozen any longer. Once we provide dynamics to the heavy electrons, the local spin-fluctuation
problem also holds for the conduction electrons.

Now we proceed to analyse the solution of the single-site problem of both electrons from
the point of view of the perturbation around the atomic limit [27, 29]. This method provides
a direct way of solving the local problem by means of a perturbative expansion in the local

1 The spin degeneracy can be lifted by a strong magnetic field or by a very large Hund’s-rule coupling, as in the case
of Fe3O4 [31].
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mean field. This approach has been used in reference [27] to obtain the exact solution for the
conduction electrons of the SH model as well as to study the problem of the spin fluctuation
in the Hubbard model. For the latter case the static approximation has been introduced. Here,
we will employ this approximation to account for the local spin fluctuations induced by the
transverse field.

In our perturbation approach to the single-site problem we start with the unperturbed local
Green’s function −〈T̂ cσ (τ )c†

σ (0)〉0; each order in perturbation theory introduces a product of
the type Aσ1(τ1 − τ ′

1)cσ (τ1)c
†
σ (τ

′
1), so in general one has to calculate averages of the form

〈cσ1
(τ1)c

†
σ1
(τ ′

1)cσ2
(τ2)c

†
σ2
(τ ′

2)〉0. To calculate this averages we rewrite the fermion operators in
terms of the Hubbard operators [30], and utilize the standard algebra for the latter. This allows
us to perform all possible direct contractions, in the sense of Wick’s theorem. We have applied
this procedure in references [27,30] to evaluate explicitly a four-operator average that appears
in the one-loop approximation. In addition, in reference [27] the static approximation for the
single-site one-particle Green’s function has been obtained by neglecting all terms that involve
non-zero bosonic frequencies originated by local contractions between boson-like Hubbard
operators. Since the averages that we need to consider here are exactly the same as in the case
of the Hubbard model, we refer the reader to references [27, 30] for their calculation.

In terms of the static approximation, the single-site one-particle Green’s function is
given by

Giiσ (iωn) = Ḡiiσ (iωn) + �σ(iωn) (5)

where

Ḡiiσ (iωn) = (1 − 〈nσ̄ 〉)ḡ0σ (iωn) + 〈nσ̄ 〉ḡσ̄2(iωn) (6)

is the well known exact solution for the conduction electrons of the SH model (the t = 0 limit
of equation (1)) and

�σ(iωn) = (g0σ − gσ̄2)Aσ̄

[
(1 − 〈nσ̄ 〉)ḡ0σ

1 − Aσ g0σ − Aσ̄ (g0σ + gσ̄2)
− 〈nσ̄ 〉ḡσ̄2

1 − Aσ gσ̄2 − Aσ̄ (g0σ + gσ̄2)

]
.

(7)

g0σ (iωn) and gσ̄2(iωn) in equations (6), (7) are the fermionic Green’s functions of Hubbard
operators [30], while ḡ0σ (iωn) and ḡσ̄2(iωn) describe the single-site one-particle excitations
renormalized by the dynamical mean field2. Note that even for the lowest order in the dynamical
mean field, �σ(iωn) is obtained from local contractions between one-band operators with
different spin orientations. This means that �σ(iωn) = 0 for systems where local spin
fluctuations are absent3.

3. Results

Let us consider first the t = 0 limit of equation (1). A↓(iωn) = 0 in this limit, because A↓
is proportional to the hybridization term. This can be easily seen from equations (3) and (4).
Therefore, in this limit the single-site one-particle Green’s function of the heavy electrons
Gii↓(iωn) is only a function of the dynamical mean field of the conduction electrons; see
equations (5)–(7). In figure 1 the density of states (DOS) of the heavy electrons is shown for
t = 0 and different values4 of U . For U = 0.9 we obtain a sharp peak around the Fermi level

2 More precisely, ḡ0σ (iωn) ≡ 1/(iωn − E + µ − Aσ (iωn)) and ḡσ̄2(iωn) ≡ 1/(iωn − E − U + µ − Aσ (iωn)).
3 The spin degeneracy can be lifted by a strong magnetic field or by a very large Hund’s-rule coupling, as in the case
of Fe3O4 [31].
4 The calculations were performed for the symmetric case with a Gaussian DOS.
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Figure 1. Zero-temperature densities of states for the heavy electrons of the simplified Hubbard
model at t = 0 for different values of U .

(ω = 0). On increasing U , the height of the central peak is reduced, and a small tendency
to form a gap is observed for U = 1. From the comparison between our results with those
of reference [23], it becomes clear that the static approximation is able to recover the main
features of the spectral properties of the heavy particles in the metallic phase of the SH model.
Indeed, in the regime of strong on-site interactionU we observe a very good agreement between
our results and those obtained by Brandt and Urbanek [23]. Hence, one can conclude that the
static approximation is very accurate in describing the ↓-electron properties of the SH model
in the strong-coupling limit.

From this result it is possible to conclude that for the half-filled and symmetric SH model
at T = 0 none of the terms that involve non-zero bosonic frequencies [23, 27, 30] in the local
Green’s functions play an important role in the limit of large values of the Coulomb on-site
interaction. Indeed, figure 1 shows that the perturbation treatment around the atomic limit is
very accurate in the large-U limit. Note that, in our treatment for the corrections due to spin
fluctuations (equation (7)), an infinite series of diagrams for the site-diagonal Green’s function
as well as for the irreducible propagators are considered. Furthermore, from the results of
figure 1 it becomes clear that our solution for the single-site problem is a good approximation,
and we do not need to consider any small parameter to justify equation (7).

As our method describes correctly the spectral properties of the SH model in the large-U
limit, we shall employ this limit to study the spectral properties of the SH model in the presence
of the transverse magnetic field, expecting to obtain realistic results. In figure 2 the DOS is
shown for both types of electrons for U = 2 and different values of the transverse field t . Let
us consider once more the t = 0 limit. In the dashed line of figure 2 one can clearly see that
the gap sizes for the two particles coincide. Hence, it is clear from this behaviour that the DOS
at the Fermi level vanishes at the same value of U for the two spin directions. Furthermore,
the DOSs of the two particles show very strong similarities. One can expect these similarities
to increase with U , and the two particles to behave in almost the same way in the half-filled
case for U → ∞.
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Figure 2. Zero-temperature densities of states for the SH model for U = 2 and different values
of t . (a) and (b) show the DOSs of ↓- and ↑-electrons, respectively.

According to our results in figure 2, the charge Mott gap is strongly affected by the
transverse field. In the case of U = 2, this gap persists up to t = 0.3, where the insulator–
metal transition takes place. It is instructive to note that for both spin directions we observe
spectral transfer from the high to the low energies. The most interesting behaviour of the
metallic phase occurs for t = 0.5, where a sharp peak around the Fermi level is observed in
the DOS of the heavy particles. This peak is related to a self-consistent modification of the
electron bath, where a partial decoupling of the local degrees of freedom takes place [16].
Note that, for both non-zero values of the transverse field in figure 2, the two atomic-like poles
of the Gii↑ remain in almost the same position, while the internal pole of the Gii↓ is shifted
to zero energy for t = 0.5. This is because the transverse field strongly mixes the low-energy
excitations of the two types of electrons by the spin-flip process.

To provide a complete description of the insulator–metal transition of the SH model in a
transverse field we study in figure 3 the single-particle density of states away from half-filling,
at a fixed n = 0.8. For t = 0 one can see that our results for the DOS of the conduction
electrons agrees with those obtained by Möller et al [32]. As in figure 2, the gaps in the DOSs
of the two particles coincide in this limit. However, the upper Hubbard band of the heavy
electrons is higher than the one for the conduction electrons, and this behaviour is related
to the atomic-like character of the heavy particles at large U . Another interesting feature to
be seen in figure 3 is the presence of a second sharp peak at high energies in the DOS of
the ↓-electrons for non-zero t . This peak reduces on increasing the transverse field. Finally,
the DOS of the conduction electrons also shows interesting new structures, in particular for
t = 0.5. We believe that these structures are related to the asymmetric behaviour in the DOS
of the heavy electrons together with the large hybridization between the two types of electrons.

To further confirm the insulator–metal transition we calculate the optical conductivity for
the half-filled case with the same parameters as were employed in figure 2. It is known that in
the infinite-dimension limit the vertex corrections drop out in the two-particle equation, and
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Figure 3. Zero-temperature densities of states for the SH model for U = 2, n = 0.8 and different
values of t . (a) and (b) show the DOSs of ↓- and ↑-electrons, respectively.

the optical conductivity assumes the simple form [26]

σ(ω) = π
∑
σ

∫
dε ρ0(ε)

∫
dω′ Aσ (ε, ω

′)Aσ (ε, ω
′ + ω)

[f (ω′) − f (ω′ + ω)

ω
(8)

where ρ0(ε) is the uncorrelated density of states of the conduction band, f (ε) is the Fermi
function and Aσ (ε, ω

′) is the one-particle spectral density of the total conduction electron
Green’s function.

Our results for the optical conductivity are shown in figure 4. For t = 0 we have a very
good agreement with those of reference [32]. As one can see, the system is an insulator with a
large gap in the optical conductivity and the maximum value of σ(ω) coincides with the value
of the Hubbard interaction. Once we turn on the transverse field, we observe a spectral transfer
from high to low energies, as in the DOS. The spectral transfer closes the gap and increases the
conductivity at low frequencies. As we expect, the system is an incoherent metal (no Drude
peak feature is found), mainly because the transverse field is not able to completely restore the
dynamics of the heavy particles.

Now we turn our attention to figure 5 where we show our results for the dc resistivity at
half-filling as a function of the temperature. For d = ∞ this quantity is given by the inverse
(1/σ(0)) of the static limit (ω = 0) of equation (8):

σ(0) = π

T

∫
dε ρ0(ε)

∫
dω′ A2

↑(ε, ω
′)f (ω′)[1 − f (ω′)] (9)

where T is the temperature.
At t = 0 and U = 2 the dc resistivity shows a semiconducting-like behaviour with

temperature. Above T = 0.6, not shown, it starts to increase with T as in a metal. In
accordance with our previous results for the insulator–metal transition, the static resistivity
decreases as a function of the transverse field. One can clearly see in figure 5 the presence
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Figure 4. The zero-temperature optical conductivity for the SH model in the half-filled case for
U = 2, and three different values of the applied transverse magnetic field.
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Figure 5. The temperature dependence of the static resistivity in the half-filled SH model for
U = 2 and different values of t .

of an isosbectic point, where all the curves cross at the same temperature. It is important
to mention that a similar behaviour for the static resistivity to the one that we obtain for
0.45 < t < 0.5 has been observed in the normal state of Bi2Sr2CuOy .

In reference [8] the in-plane (ρab) and out-of-plane (ρc)dc resistivities of Bi2Sr2CuOy have
been measured for different values of the magnetic field. The experiment shows completely
different behaviours for the in-plane and out-of-plane measurements: ρab increases to a certain
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saturation value, while ρc strongly decreases (by a factor of 104) for the same values of the
magnetic field. One can understand this contrasting behaviour by considering our results and
those of reference [24]. As mentioned before, it was shown in reference [24] that the critical
U for the metal–insulator crossover is reduced by the effect of a z-component magnetic field.
Thus for the same value of U the system loses its metallic phase as a function of the field and
the resistivity increases with the Zeeman field. On the other hand, we show here that a field
applied along to the x-direction (in the spin space) drives an insulator-to-metal transition in
the system. Since both theoretical results agree with what was observed in the measurements
of Ando et al, one can conclude that the direction along which the field is applied is crucial
for systems with broken spin symmetry.

4. Conclusions

We report the results of the first systematic study of a strongly correlated electron system in
transverse fields, undertaken to understand the interplay between on-site correlations and local
spin fluctuations. To make contact with experiment we consider the simplified Hubbard (SH)
model, a model Hamiltonian with broken spin symmetry. The relevant one-particle Green’s
functions for this model in the presence of a transverse field t are obtained by means of a
perturbative treatment of the hopping and the field around the atomic limit. We employ the
static approximation to study the insulator–metal transition as a function of t . At intermediate
values of the field the metallic phase shows very interesting features. In this regime we observe
the presence of sharp peaks in the spectral function of the heavy electrons at the Fermi level.
We show that the static approximation is very accurate in describing the dynamics of the heavy
particles for intermediate and strong values of U .

We have also studied the optical properties of the SH model as a function of the transverse
field. Our results for the optical conductivity and static resistivity confirm the insulator–metal
crossover. We found good qualitative agreement between our results for the latter quantity
and those observed for the out-of-plane resistivity of Bi2Sr2CuOy [8]. In both theoretical and
experimental investigations the resistivity decreases as a function of the magnetic field. In
addition, we observe in our results the presence of an isosbectic point, where all curves cross
at the same temperature. This crossing point seems to appear also in the experiment, although
it could not be clearly observed because the measurements were done for temperatures slightly
below that at which the crossing occurs.

To further our understanding of the semiconducting behaviour along the c-axis in
cuprates [33], we should mention that in the non-magnetic phase the SH model has an intrinsic
disorder built into it. Such disorder is responsible for the non-Fermi-liquid properties of the
conduction electrons, since the heavy electrons act as randomly distributed scattering centres.
For large values of disorder (U in the present model), the motion of the conduction electrons is
totally suppressed and the system behaves as a semiconductor, as shown in figure 5 for small
values of t . According to our results, the semiconducting behaviour can be partially suppressed
by enhancing the local spin degrees of freedom through a transverse field. Following this
scenario and the measurements of the dc resistivity of Bi2Sr2CuOy , one can suggest that the
low-temperature semiconducting behaviour in cuprates along the c-direction might result from
conventional random disorder.

Finally, as a possible extension of this work we should consider in the future the possibility
of extending our approach to the case of the one-band Hubbard model. In this case it would be
interesting to analyse the effect of the transverse field on the well known Fermi-liquid properties
of this model. Furthermore, inspired by the results of figure 1 it would be interesting to
analyse whether our perturbation method for the local problem is also accurate in describing the
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single-particle properties of the Hubbard model in the large-U limit. Unfortunately, apparently
there are no exact results for this model at T = 0 for d = ∞, but one can follow the spirit of
reference [29] and compare our results for the Matsubara Green’s functions with those of finite-
temperature quantum Monte Carlo simulations [26]. We believe that the static approximation
(equation (5)) is an effective approximation for the Hubbard model if we consider that the
local spin fluctuations are irrelevant in the strong-coupling limit.
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[32] Möller G et al 1992 Phys. Rev. B 46 7427
[33] Iye Y 1991 Physical Properties of High Temperature Superconductors III ed D M Ginsberg (Singapore: World

Scientific)


